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ABSTRACT 
 

Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or 

gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) 

lightweight concrete is the most interesting lightweight concrete and has good mechanical 

properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper 

flexural strength of EPS is modeled using four regression models, nine neural network 

models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among 

these models, ANFIS model with Bell-shaped membership function has the best results and 

can predict the flexural strength of EPS lightweight concrete more accurately. 
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1. INTRODUCTION 
 

Concrete is one of the most widely used materials in construction industry. The main reason that 

makes concrete one of the popular material in building construction is its mechanical properties 

and its low cost (Maslehuddin et al. 2018; Traore et al. 2018). Economically, the weight of 

concrete is one of the most factors. Normal weight concrete (NWC) has relatively high unit 
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weight and has a bulk density ranging between 2200-2600 kg/m3. In order to reduce the unit 

weight of concrete, lightweight aggregates could be used, and the concrete which made of these 

kind of aggregates, called lightweight concrete (LWC). LWC has a bulk density ranging between 

300-2000 kg/m3 (Maslehuddin et al. 2018; Aslam et al. 2017). 

Lightweight concrete has been used for more than 80 years (Jafari and Mahini 2017). 

Because of its advantages, it is the most interesting field of researchers. These advantages 

including lower cost, better thermal performance, fire and frost resistance, cost-efficiency 

balance, sound absorption and etc. Because of lower density of LWC, lighter-weight structures 

could be produced (Aslam et al. 2017; Shafigh et al. 2018; Kwon and Mun 2018). Lightweight 

concrete has many applications including multi-storey buildings, concrete bridges, offshore oil 

platforms, and etc. (Jafari and Mahini 2017). 

Lightweight concrete can be produced by: 

i.Utilizing natural or artificial aggregates. Natural aggregate such as pumice, diatomite, 

volcanic cinders, scoria, tuff and artificial aggregate such as Oil-palm-boiler clinker (OPBC), 

clay, shale, slate, perlite. This type of LWCs are made in factories 

ii.Using plastic granules instead of normal aggregates such as expanded polystyrene (EPS), 

polyurethane and etc.,  

iii.Adding gas agent which produce gas in the alkaline environment of concrete such as 

aluminum powder or foaming agents (Maslehuddin et al. 2018; Aslam et al. 2017; Shafigh et al. 

2018; Sadrmomtazi et al. 2012; Suseno et al. 2018). 

Among these types of lightweight concrete, the one produced by expanded polystyrene with 

millimeter-size is more interesting than other types; because it is expected that structural 

elements fabricated on construction site. Also this kind of aggregate can be easily merged into 

concrete or mortar and create LWC (Bouvard et al. 2007; Liu and Chen 2014). 

EPS lightweight concrete is a kind of new lightweight concrete that has good mechanical 

properties. First use of EPS was at 1973 by Cook (Liu and Chen 2014). 

Strength properties, water absorption, shrinkage and electrical resistivity of EPS concrete 

containing silica fume and rice husk ash were experimentally  studied by  Sadrmomtazi et al. and 

the results showed a potential use of EPS beads for producing structural grade, moderate 

strength grade and insulating lightweight concrete [Sadrmomtazi et al. 2012]. Morover, in 2013, 

Sadrmomtazi et al., modeled the compressive strength of EPS lightweight concrete using 

regression, neural network and ANFIS.  

Despite a number of research studies on the different properties of EPS concrete, it has rarely 

investigated modeling their flextural strenght properties. In this regard, the aim of this paper is to 

modeling the flexural strength of EPS lightweight concrete. Regression, neural network and 

ANFIS are the three methods used in this paper. Five regression, nine neural network and four 

ANFIS models were trained and tested. Before modeling, data were normalized to prevent the 

saturation problems. Finally, the results were compared to find the best model. 

 

 

2. MODELING METHODS 
 

2.1 Regression modeling 

Regression Modeling is a tool which analysis the relationship between a response parameter 

(dependent variable) and one or more input parameters (independent variables). There are 

two types of regression: Linear and Nonlinear. In linear regression modeling, the aim is to fit 
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a linear equation between parameters, and in nonlinear regression modeling, the aim is to fit 

a nonlinear equation. In this paper, the general form of regression is 

 

𝑦 = 𝑓 𝛼𝑖 × 𝑥𝑖  (1) 

 

where f is the linear/nonlinear regression function, y is the dependent variable, xi are the 

independent variables, and αi are the constant coefficients of the model (Sobhani et al. 2010). 

The main goal of regression modeling is to find a function (linear or nonlinear) which has 

the best fitting. 

 

2.2 Artificial neural network model 

Artificial Neural Network (ANN) is an artificial intelligence-based method that provides a 

nonlinear relationship between input and output variables (Manngård et al. 2018). Neural 

network is composed of simple elements. These elements are inspired by biological nervous 

system. ANN has a powerful ability in image process, regression, and etc. ANN consists of 

many processors which called processing elements (PE) or neurons, an input layer, one or 

more hidden layers (HLs) and one output layer. The layers between the input and output 

layer are called hidden layers and there is no direct link between input and output layers. 

The neurons receive the signals from input, process them through algorithms, biases and 

weights. The weights between the layers are selected randomly and during the processing, 

they didn’t change. But in each cycle, they change to obtain the best performance. The 

efficiency of this model depends on the quality and quantity of data (Sobhani et al. 2010; 

Cao et al. 2018; Schmidhuber 2015; Heidari et al. 2018). 

In order to use a neural network, it’s necessary to specify some specifications, such as the 

number of layers, training algorithm, activation function, propagation rules and etc. 

 

2.2.1 Training algorithm 

Levenberg-Marquardt back-propagation algorithm is often the fastest back-propagation 

algorithm for training feed-forward neural networks. This algorithm is an approximation to 

Newton’s method. Newton's method is faster and more accurate near an error minimum, so 

the aim is to shift toward Newton's method as quickly as possible (Hagan and Menhaj 1994; 

Mathworks (1) 2017). 

 

2.2.2 Propagation rules 

For a multilayer model the propagation rule is the weighted sum and it is defined as: 

 

 𝑤𝑖𝑗 𝑥𝑖

𝑛

𝑖=1

 (2) 

 

where wij  is the weight that connects PE 𝑖 in the input layer to PE 𝑗 in the hidden layer, 𝑥𝑖  is 

the output from PE 𝑖 in the input layer and 𝑛 is the number of PEs. If there is bias in PE eq. 

2 turned into (Villarrubia et al. 2018) 
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 𝑤𝑖𝑗 𝑥𝑖

𝑛

𝑖=1

+ 𝑏 (3) 

 

Fig. 1 shows the architecture of artificial neural networks. As shown in this figure, ANNs 

consist of Inputs, training algorithm, activation function, propagation rule and output. 

 
Figure 1. Architecture of ANN 

 

2.3 Adaptive network-based fuzzy interface system (ANFIS) 

ANFIS is hybrid of neural network and fuzzy logic system for modeling the complex 

systems and it was first introduced by Jang. ANFIS uses a set of IF-THEN fuzzy rules to act 

like human reasoning style (Sobhani et al. 2010; Yuan et al. 2014). It has the benefits of 

both artificial neural network (ANN) and fuzzy systems. Particularly it has used in 

engineering applications, where classical methods fail or they are too complicated to be used 

(Vakhshouri and Nejadi 2017). 

Type of membership functions and number of epochs are important factors in fuzzy logic 

system to create a model by minimum error size (Vakhshouri and Nejadi 2017).A 

membership function (MF) is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1 (Mathworks (2) 

2017). 

The architecture of an ANFIS model with two input variables is shown in Fig. 2. For 

simplicity of illustration only two inputs  x, y  and one output 𝑓 are considered in this figure. 

 

 
Figure 2. The architecture of ANFIS model 
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The function of each layer are described as (Sobhani et al. 2010; Yuan et al. 2014): 

Layer 1: The first layer is the fuzzy layer. Every node in this layer is an adaptive node 

with a node function of 

 

𝑂𝑖
1 = 𝜇𝐴𝑖

 𝑥  (4) 

 

where 𝑥 is the input to node 𝑖, and 𝐴𝑖  is the linguistic label associated with this node 

function. 

Layer 2: Every node in this layer is a circle node labeled 𝛱, which multiplies the 

incoming signals and sends the product out. For instance 

 

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖

 𝑥 × 𝜇𝐵𝑖
 𝑥 ,        𝑖 = 1,2 (5) 

 

Layer 3: Every node in this layer is a circle node labeled 𝑁. The ith node calculates the 

ratio of the ith rule’s firing weight to the sum of all rule’s firing weights: 

 

𝑂𝑖
3 = 𝑤𝑖   =

𝑤𝑖

 𝑤𝑖

,        𝑖 = 1,2 (6) 

 

Layer 4: Every node in this layer is an adaptive node with a node function: 

 

𝑂𝑖
4 = 𝑤𝑖   𝑓𝑖 ,        𝑖 = 1,2 (7) 

 

where wi    is the output of layer 3, and fi = pix + qiy + ri  where  pi , qi , ri  is the parameter 

set.  

Layer 5: The signal node in this layer is a circle node labeled ∑, that computes the 

overall output as the summation of all incoming signals 

 

𝑂𝑖
5 =  𝑤𝑖   𝑓𝑖

𝑖

=  𝑤𝑖𝑓𝑖

𝑖

/  𝑤𝑖

𝑖

,        𝑖 = 1,2 (8) 

 

There are five layers in this model: input, input membership function, rule, output 

membership function, and output. 

 

 

3. MATERIALS AND MIXTURE DESIGN 
 

3.1 Materials 
The materials used to produce the lightweight concrete is described below: 

 

3.1.1 Cementitious materials and fillers 

In this study, the Portland cement (ASTM C150 (ASTM C150 2003)) as the main material and 

silica fume (SF) and rice hush ash (RHA) as the fillers were used. The chemical compositions 

and properties these materials are reported in Table 1. 
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Table 1: Chemical composition and properties of cement, silica fume and rice hush ash 

Chemical composition cement silica fume (SF) rice hush ash (RHA) 

𝑆𝑖𝑂2 21 91.1 91.62 

𝐴𝑙2𝑂3 4.6 1.55 0.49 

𝐹𝑒2𝑂3 3.2 2.0 0.73 

𝐶𝑎𝑂 64.5 2.42 2.51 

𝑀𝑔𝑂 2.0 0.06 0.88 

𝑆𝑂3 2.9 0.45 - 

𝑁𝑎2𝑂 + 0.685𝐾2𝑂 1.0 - 2.39 

 

3.1.2 Aggregates and EPS beads 

The fine aggregate was natural siliceous river sand and the coarse aggregate was crushed 

limestone aggregate. The properties of these aggregates are reported in Table 2. 

 
Table 2: Properties of stone aggregates 

Aggregate type specific gravity absorption (%) fineness modulus 

Fine (0-4.75 mm) 2.51 3.40 2.82 

Coarse (4.75-12 mm) 2.54 2.57 - 

 

Table 3: Properties of PP fibers 

Properties Description 

morphology Fibrillated or mono filament 

Specific gravity (gr/cm3) 0.95 

Diameter (µm) 50 

Modulus of elasticity (GPa)  5 

Tensile strength (MPa)  450 

Ultimate strain (%) 5 – 15 

Elongation of fracture (%) ~ 20 

Melting point (ºC) 160 

Bonding with cement Good 

Stability in cement Good 

Aspect ratio (L/d) 120 

 

3.1.3 Fibers and EPS beads 

Moreover, the EPS beads were used as artificial lightweight aggregates in order to decrease the 

density of concrete. The size of 85% of EPS beads were about 3.5 mm.  

In addition to the EPS beads, polypropylene (PP) fibers were used to improve the toughness 

of EPS lightweight concrete. The properties of PP fibers are presented in Table 3. 

 

3.2 Mixture design 

Twelve concrete mixtures were utilized with different composition of row materials and water to 

cementitious materials ratio as summarized in Table 4. 
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Table 4: Mixture proportion 

mixture 
Cement 

(kg/m
3
) 

SF (%) 
RHA 

(%) 

EPS 

(kg/m
3
) 

PP fibers 
W/(C+

CM) 

Aggregate size in 

mm, (kg/m
3
) 

0-3  3-6  6-12  

LWC-1 400 - - - 

0%, 0.1%, 

0.3%, 0.5%, 1% 

by volume 

0.45 666 118 958 

LWC-2 400 - - 15 0.43 541 95 777 

LWC-3 400 - - 25 0.41 431 76 620 

LWC-4 400 - - 40 0.40 294 52 423 

LWC-5 360 10 - - 0.48 652 115 936 

LWC-6 360 10 - 15 0.43 524 92 753 

LWC-7 360 10 - 25 0.44 422 75 608 

LWC-8 360 10 - 40 0.43 282 50 406 

LWC-9 320 - 20 - 0.52 623 110 896 

LWC-10 320 - 20 15 0.56 469 83 674 

LWC-11 320 - 20 25 0.52 386 68 554 

LWC-12 320 - 20 40 0.51 245 43 352 

 

 

4. DATA COLLECTION 
 

The flexural strength of EPS lightweight concrete for four percentage of EPS, five 

percentage of PP, three weights of cement were reported in Table 4. Silica fume and rice 

hush ash were used 10 wt. % and 20 wt. %, respectively. EPS concrete specimens were 

prepared in the standard condition. 

According to Table , cubic specimens of EPS concrete were produced and the database 

was created. These specimens were cured for 28 days. Then, according to ASTM C330 

(ASTM C330 2003). 

75 data records of EPS concrete Flexural strength at 28 days were gathered for database. 

60 of these records were randomly utilized for training and the rest of them for testing the 

models. The structure of input-output of the modeler system was schematically shown in 

Fig. 3. In this Figure, the input parameters are (i) cement (C), (ii) silica fume (SF), (iii) water 

(W), (iv) fine aggregates (FA), (v) coarse aggregates (CA), (vi) expanded polystyrene beads 

(EPS), and (vii) Polypropylene fibers (PP) by weight per unit volume of concrete. Moreover, 
Table 5 summarizes the range of input and output of total data used for modeling purposes. 

 

 
Figure 3. The structure of input-output of the modeler system 
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Table 5: Range of input and output variables 

Variable abbreviation 
Range 

min max 

Input    

Cement (kg/m3) C 320 400 

Silica fume (kg/m3) SF 0 40 

Water (kg/m3) W 160 230 

Fine aggregates (kg/m3) FA 97 784 

Coarse aggregates (kg/m3) CA 118 958 

expanded polystyrene beads (kg/m3) EPS 0 55 

Polypropylene fibers (kg/m3) PP 0 9.1 

    

Output    

Flexural strength (MPa) FS 0.8 7.4 

 

 

5. PREPROCESSING OF DATA 
 

To prevent the saturation problem and consequently the low rate of the training [10], in neural 

network with log-sigmoid activation function it is important to normalize the data into a proper 

range. In this paper, the following function converts the real input data into the proportional 

values in the range of [0.1, 0.95]: 

 

𝑜𝑢𝑡 = 0.1 +  0.95 − 0.1 ∗
𝑖𝑛 − 𝑖𝑛𝑚𝑖𝑛

𝑖𝑛𝑚𝑎𝑥 − 𝑖𝑛𝑚𝑖𝑛
 (9) 

 

where out is the normalized value, in is the rough input, inmax  and inmin  are the maximum and 

minimum of rough input, respectively. Clearly, by inversing the eq. 9, the values of model 

results could be converted to the real range. 

 

 

6. MODELING PERFORMANCE CRITERIONS 
 

To evaluate the performance of models, root means square (RMS), correlation factor (CF) 

and non-dimensional error index (NDEI) should be calculated for all models and then 

compared to each other. The model which has the lower RMS and the higher CF, is the best 

model. 

 

6.1 Root means square 

Root Means square is calculated by the following equation: 

 

𝑅𝑀𝑆 =  
1

𝑛
  𝑥𝑟𝑖 − 𝑥𝑝𝑖  

2
𝑛

𝑖=1

 (10) 
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where 𝑛 is the total number of samples, 𝑥𝑟𝑖  and 𝑥𝑝𝑖  are the real (experimental) and predicted 

values for the ith sample, respectively. 
 

6.2 Correlation factor 

Correlation Factor is calculated by the following equation: 

 

𝐶𝐹 𝑥𝑟 , 𝑥𝑝 =
𝑐𝑜𝑣(𝑋𝑟 , 𝑋𝑝)

 𝑐𝑜𝑣  𝑋𝑟 , 𝑋𝑟 ∗ 𝑐𝑜𝑣(𝑋𝑝 , 𝑋𝑝)
 (11) 

 

where 

 

𝑋𝑟 =  𝑥𝑟1 , 𝑥𝑟2 , … , 𝑥𝑟𝑛  ,       𝑋𝑝 =  𝑥𝑝1 , 𝑥𝑝2 , … , 𝑥𝑝𝑛   (12) 

 

and 

 

𝑐𝑜𝑣 𝑋𝑟 , 𝑋𝑝 = 𝐸  𝑋𝑟 − 𝜇𝑟 .  𝑋𝑝 − 𝜇𝑝   (13) 

 

where 

 

𝜇𝑟 = 𝐸 𝑋𝑟 ,       𝜇𝑝 = 𝐸 𝑋𝑝  (14) 

 

where E is the mathematical expectation. 

 

6.3 Non-dimensional error index 

Non-dimensional error index can be calculated using: 

 

𝑁𝐷𝐸𝐼 =
 1

𝑛
  𝑥𝑟𝑖 − 𝑥𝑝𝑖  

2𝑛
𝑖=1

𝜎 𝑥𝑟 
 

(15) 

 

where σ xr  is the standard deviation (Sobhani and Najimi 2014). 

 

 

7. RESULTS AND DISCUSSION 
 

In this paper, three types of modeling include regression, neural network, and ANFIS were 

used. For implementing these models, Matlab software was used. 

 

7.1 Linear and nonlinear regression modeling 

Four regression models proposed. These models are presented in Table 6. The calculated 

coefficients (αi) of these models are demonstrated in Table 7. 
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Table 6: Proposed regression model 

Model Type Equation 

R1 Linear 𝐹𝑆 = 𝛼0 + 𝛼1𝐶 + 𝛼2𝑆𝐹 + 𝛼3𝑊 + 𝛼4𝐹𝐴 + 𝛼5𝐶𝐴 + 𝛼6𝐸𝑃𝑆 + 𝛼7𝑃𝑃 

R2 Pure quadratic 

𝐹𝑆 = 𝛼0 + 𝛼1𝐶 + 𝛼2𝑆𝐹 + 𝛼3𝑊 + 𝛼4𝐹𝐴 + 𝛼5𝐶𝐴 + 𝛼6𝐸𝑃𝑆 + 𝛼7𝑃𝑃
+ 𝛼8𝐶2 + 𝛼9𝑆𝐹2 + 𝛼10𝑊2 + 𝛼11𝐹𝐴2 + 𝛼12𝐶𝐴2

+ 𝛼13𝐸𝑃𝑆2 + 𝛼14𝑃𝑃2 

R3 power 
𝐹𝑆 = 𝛼0 + 𝛼1𝐶𝛼2 + 𝛼3𝑆𝐹𝛼4 + 𝛼5𝑊𝛼6 + 𝛼7𝐹𝐴𝛼8 + 𝛼9𝐶𝐴𝛼10

+ 𝛼11𝐸𝑃𝑆𝛼12 + 𝛼13𝑃𝑃𝛼14  

R4 fractional 
1

𝐹𝑆
= 𝑎0 +

𝑎1

𝐶
+

𝑎2

𝑆𝐹
+

𝑎3

𝑊
+

𝑎4

𝐹𝐴
+

𝑎5

𝐶𝐴
+

𝑎6

𝐸𝑃𝑆
+

𝑎7

𝑃𝑃
 

 
Table 7: Evaluated coefficients of proposed models 

Model 𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 

R1 .165 .082 .108 -.009 .733 -.122 -.140 -.041        

R2 .054 0 0 -.044 
-

2.415 
2.997 -.015 .220 .032 .092 -.014 4.394 -4.20 .017 -.245 

R3 .327 -.165 -.13 .115 9.398 -.01 1.965 .334 1.291 .384 1.296 -.012 1.485 
-

.144 
19.265 

R4 1.137 
-

.0012 
.0183 

-

.0503 

-

.5956 
1.2961 -.050 

-

.0285 
       

 
The performance of these models (root mean square, correlation factor and non-dimensional 

error index) were calculated using the equations 10, 11 and 15 and demonstrated in Table 8. The 

prediction of regression models and experimental results are compared in Fig. 5. 

 

Table 8: Performance of regression models 

Model 

Training 

(Interpolation) 
 

 

Testing 

(Extrapolation) 
 

 

Checking data  

RMS CF NDEI RMS CF NDEI RMS CF NDEI 

R1 0.4471 0.9668 0.2536 0.4272 0.9648 0.2869 0.4804 0.9523 0.2990 

R2 0.4150 0.9714 0.2354 0.4166 0.9649 0.2798  0.4082 0.9667 0.2541 
R3 0.4168 0.9712 0.2364  0.4344 0.9618 0.2917  0.4126 0.9650 0.2568 

R4 0.5895 0.9436 0.3344  0.4822 0.9445 0.3239  0.6420 0.9179 0.3996 

 

According to Fig. 4 and Table 8, model R2 is the best regression model, because it has 

the lowest RMS and highest CF. This model predicts the flexural strength of EPS concrete 

with RMS of 0.4150, 0.4166 and 0.4082 for training set, testing test and checking set, 

respectively. The CF values for training set, testing set and all data, according to model R2, 

are 0.9714, 0.9649 and 0.9667, respectively. The values of NDEI for training set, testing set 

and checking set in model R2 are 0.2354, 0.2796 and 0.2541, respectively. 
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Figure 4. Comparison of regression models with experimental results: (A) training set, (B) 

testing set, (C) checking set 

 

7.2 Artificial neural networks models 

The schematic structure and general properties of used ANN are shown in Fig. 5 and Table 

9, respectively. 

 
Table 9: General properties of NNM 

Type 
Training method/ 

algorithm 

Activation 

function in 

HLs 

Activation 

function in 

output layer 

No. of 

PE in 

HL 

Layers 

number 

HLs 

number 

Feed-forward 

back-propagation 

network 

Supervised/ 

Levenberg-

Marquardt BP 

Log-sigmoid 
Linear transfer 

function 
variable 4 2 
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The neural network models were trained by 60 data and tested by 15 data. Matlab 

software and its neural network tools were used to train the NN models. 

 

 
Figure 5. The schematic structure of ANN model 

 

The architectures and performance of neural network models are summarized in Table 

10. First number in model name indicates the number of processing elements in hidden layer 

1 and second number indicates the number of processing elements in hidden layer 2. 

According to Table 10, NNM34 has the best performance (lower RMS, lower NDEI highest 

CF). RMS values of this model are 0.1317, 0.2138 and 0.0842 for training set, testing set 

and checking data, respectively. CF values of this model are 0.9972, 0.9899 and 0.9987 for 

training set, testing set and checking data, respectively. The values of NDEI are 0.0747, 

0.1436 and 0.0524 for training data, testing data and checking data, respectively. 

 
Table 10: Architecture and performance of NNMs 

Model 

name 

No. of PE 

in 

 

Training set  

 

Testing set  

 

Check data  

HL1 HL2 RMS CF NDEI RMS CF NDEI RMS CF NDEI 

NNM11 1 1 0.3965 0.9770 0.2249 0.3934 0.9673 0.2642 0.3913 0.9684 0.2436 

NNM22 2 2 0.2140 0.9927 0.1214 0.2756 0.9844 0.1851 0.2055 0.9921 0.1279 

NNM33 3 3 0.1643 0.9956 0.0932 0.2463 0.9879 0.1654 0.2168 0.9913 0.1349 

NNM34 3 4 0.1317 0.9972 0.0747 0.2138 0.9899 0.1436 0.0842 0.9987 0.0524 

NNM43 4 3 0.1421 0.9968 0.0806 0.3148 0.9882 0.2114 0.1815 0.9936 0.1129 

NNM44 4 4 0.1423 0.9970 0.0807 0.2673 0.9871 0.1795 0.2627 0.9914 0.1635 

NNM45 4 5 0.1089 0.9981 0.0618 0.3776 0.9693 0.2536 0.2976 0.9850 0.1852 

NNM54 5 4  0.1120 0.9980 0.0635  0.4415 0.9576 0.2965  0.4156 0.9659 0.2587 

NNM55 5 5  0.1338 0.9971 0.0759  0.5940 0.9487 0.3989  0.4104 0.9735 0.2554 

 
As mentioned before NNM34 is the best model for neural network modeling, so experimental 

results versus modeling results for NNM34 is shown in Fig. 6. The horizontal and vertical axis 

represents the modeling results and experimental results, respectively. Accumulating more 

points near the diagonal line, represents better performance for the model.  
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Figure 6. Compression of experimental results and modeling result for (a) training data (b) 

testing data, (c) checking data 

 

7.3 ANFIS model 

Similar to neural network, the ANFIS model use 7 inputs (i.e. C, SF, W, FA, CA, EPS and 

PP) and one output (i.e. FS). In this paper four types of membership function (MF) were 

used. These membership functions are Triangular, Trapezoidal, Bell-shaped and Gaussian. 

The formula and graphs of these MFs are shown in Table 11. 

The ANFIS models were trained by 60 data and tested by 15 data. 100 epochs were 

specified for training process to assure that minimum error was gained. Also 15 data were 

chosen randomly among training and testing data as checking data. 

The results of these ANFIS models were shown in Table 12. According to this table, all 

models have good performance, but the model with Bell-shaped membership function has 

the best performance for testing and checking data, so ANF-Bell is the best model. The 

RMS values of this model are 2.48e-4, 0.4494 and 0.2192 for training data, testing data and 

checking data, respectively. The values of CF of this model for training data, testing data 

and checking data are 1.0000, 0.9727 and 0.9915, respectively. Also the values of NDEI are 

1.41e-4, 0.3018 and 0.1364 for training data, testing data and checking data, respectively. 

Comparison of experimental results and ANF-Bell model is shown in Fig. 7. 
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Table 11: Types of member functions 

Type Formula Graph 

Triangular 𝑓 𝑥; 𝑎, 𝑏, 𝑐 =

 
 
 

 
 

0 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
       𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
        𝑏 ≤ 𝑥 ≤ 𝑐

0 𝑐 ≤ 𝑥  
 
 

 
 

 

 

Trapezoidal 𝑓 𝑥; 𝑎, 𝑏, 𝑐, 𝑑 =

 
  
 

  
 

0 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
       𝑎 ≤ 𝑥 ≤ 𝑏

1               𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
       𝑐 ≤ 𝑥 ≤ 𝑑

0 𝑑 ≤ 𝑥  
  
 

  
 

 

 

Bell-shaped 𝑓 𝑥; 𝑎, 𝑏, 𝑐 =
1

1 +  
𝑥 − 𝑐

𝑎
 

2𝑏  

 

Gaussian 𝑓 𝑥; 𝑐, 𝜎 = 𝑒
− 𝑥−𝑐 2

2𝜎2  

 

 

Table 12: The results of ANFIS models 

Model 

name 
MF 

 

Training data 

 

Testing data 

 

Checking data 

RMS CF NDEI RMS CF NDEI RMS CF NDEI 

ANF-Tri Triangular 0.0011 1.0000 6.46e-4 0.7273 0.9551 0.4885 0.3464 0.9815 0.2157 

ANF-Trap Trapezoidal  0.0399 0.9997 0.0226  0.8414 0.9067 0.5651  0.3883 0.9694 0.2417 

ANF-Bell Bell-shaped  2.48e-4 1.0000 1.41e-4  0.4494 0.9727 0.3018  0.2192 0.9915 0.1364 

ANF-Gauss Gaussian  8.59e-5 1.0000 4.87e-5  0.6133 0.9469 0.4119  0.3517 0.9799 0.2189 
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Figure 7. Comparison of experimental and modeling (ANF-Bell model) results for: (a) 

training set, (b) testing set, (c) checking set 

 

 

8. CONCLUSION 
 

In this paper, flexural strength of EPS lightweight concrete were modeled using regression, 

artificial neural network and ANFIS model. 75 data were made experimentally and among 

these data, 60 data were randomly selected to train the models and 15 data were used to test 

the proposed models. Four regression models, five neural network models and four ANFIS 

model were trained and the following results were obtained as follows: 

 Among the four regression models (e.g. linear, pure quadratic, power and fractional) pure 

quadratic model has the best performance with lower RMS and higher CF. 



J. Sobhani, M. Ejtemaei, A. Sadrmomtazi and M.A. Mirgozar 

 

328 

 For neural network models, the optimal number of PEs in HLs should be found. Among the 

nine neural network models, NNM34 has the best result, so the optimal number of PEs in 

HL1 is 3 and in HL2 is 4. 

 For ANFIS models several membership function were trained and among these MFs, Bell-

Shaped MFs has the best results. 

 Among all regression, neural network and ANFIS models, Bell-shaped membership function 

of ANFIS model has best performance and could predict the Flexural Strength of EPS 

lightweight concrete better than other models. 

 

On behalf of all authors, the corresponding author states that there is no conflict of 

interest 
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